
DRAFT
Technical
Specification

ISO/DIS TS 25755

Programming Languages — C — defer, a mechanism
for general purpose, lexical scope-based undo

This document has not been edited by the ISO Central Secretariat.

Reference Number
ISO/DIS TS 25755 : Working Draft NABCD

ISO/ TC22/SC22
Secretariat: JISC

Voting begins on: n/a

Voting terminates on: n/a

THIS DOCUMENT IS A DRAFT CIRCULATED
FOR COMMENTS AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND
MAY NOT BE REFERRED TO AS A
TECHNICAL SPECIFICATION UNTIL
PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND USER
PURPOSES, DRAFT TECHNICAL
SPECIFICATIONS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF
THEIR POTENTIAL TO BECOME STANDARDS
TO WHICH REFERENCE MAY BE MADE IN
NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND
TO PROVIDE SUPPORTING
DOCUMENTATION.

© ISO 2025

ISO/DIS TS25755(en)

⚠ COPYRIGHT PROTECTED DOCUMENT
© ISO/IEC 2025
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be
requested from either ISO at the address below or ISO’s member body in the country of the
requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

© ISO 2025 — All rights reserved.
ii

tel:+41227490111
tel:+41227490947
mailto:copyright@iso.org
https://www.iso.org

ISO/DIS TS25755(en)

Content

Foreword . iv

Introduction . v

1 Scope . 6

2 Normative References . 6

3 Terms and definitions . 6

4 Conformance . 6

5 Environment . 6

5.1 General . 6

5.2 Program termination . 6

6 Language . 6

6.1 General . 6

6.2 Keywords . 6

6.3 Statements . 6

6.4 Defer statements . 7

6.5 Predefined macro names . 13

7 Library . 13

Index . 13

© ISO 2025 — All rights reserved.
iii

ISO/DIS TS25755(en)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/
members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve
the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or
applicability of any claimed patent rights in respect thereof. As of the date of publication of this
document, ISO and IEC had not received notice of (a) patent(s) which may be required to implement
this document. However, implementers are cautioned that this may not represent the latest
information, which may be obtained from the patent database available at www.iso.org/patents and
patents.iec.ch. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.
org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.
ch/national-committees.

© ISO 2025 — All rights reserved.
iv

https://www.iso.org/directives
https://www.iec.ch/members_experts/refdocs
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/patents
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://www.iec.ch/national-committees

ISO/DIS TS25755(en)

Introduction

The advent of resource leaks in programs created with ISO/IEC 9899 ⸺ Programming Languages,
C has necessitated the need for better ways of tracking and automatically releasing resources in a
given scope. This document provides a feature to address this need in a reliable, translation-time,
opt-in manner for implementations to furnish to programmers.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);
— the characteristics of environments that translate and execute C programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);
— the library facilities (Clause 7).

In any given subsequent clause or subclause, there are section delineations in bold to describe the
semantics, restrictions, and behaviors of programs for this language and potentially the use of its
library clauses in this document:

— Syntax
which pertains to the spelling and organization of the language and library;

— Constraints
which detail and enumerate various requirements for the correct interpretation of the
language and library, typically during translation;

— Semantics
which explain the behavior of language features and similar constructs;

— Description
which explain the behavior of library usage and similar constructs;

— Returns
which describes the effects of constructs provided back to a user of the library;

— Recommended practice
which provides guidance and important considerations for implementers of this document.

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementers.

© ISO 2025 — All rights reserved.
v

ISO/DIS TS25755(en)

1 Scope

This Technical Specification specifies a series of extensions of the programming language C, specified
by the international standard ISO/IEC 9899:2024.

Each clause in this Technical Specification deals with a specific topic. The first sub-clauses of clauses
4 through 7 contain a technical description of the features of the topic and what is necessary for an
implementation to achieve conformance through extensions or additions to ISO/IEC 9899:2024.

2 Normative References

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9899:2024, Programming languages — C

3 Terms and definitions

For the purposes of this document, the terms and definitions of ISO/IEC 9899:2024 apply.

4 Conformance

The requirements from ISO/IEC 9899:2024, clause 4 apply without any additional requirements in this
document.

5 Environment

5.1 General

The requirements from ISO/IEC 9899:2024, clause 5 apply along with the following additional require-
ments to support the defer feature.

5.2 Program termination

Semantics

If the return type of the main function is a type compatible with int, a return from the initial call to the
main function is equivalent to calling the exit function with the value returned by the main function
as its argument after all active defer statements of the function body of main have been executed.

6 Language

6.1 General

The requirements from ISO/IEC 9899:2024, clause 6 apply along with the following additional require-
ments to support the defer feature.

6.2 Keywords

In addition to the keywords in ISO/IEC 9899:2024 §6.4.2, an implementation shall additionally recog-
nize defer as a keyword.

6.3 Statements

© ISO 2025 — All rights reserved.
6

ISO/DIS TS25755(en)

In addition to the statements in ISO/IEC 9899:2024 §6.8, implementations shall allow the unlabeled
statement grammar production to produce a defer statement which contains a deferred block.

Syntax

unlabeled-statement:
expression-statement
attribute-specifier-sequenceₒₚₜ primary-block
attribute-specifier-sequenceₒₚₜ jump-statement
defer-statement

deferred-block:
unlabeled-statement

6.4 Defer statements

Syntax

defer-statement:
defer deferred-block

Description

Let D be a defer statement, S be the deferred block of D, and E be the enclosing block of D.

Constraints

Jumps by means of goto or switch shall not jump into any defer statement.

Jumps by means of goto or switch into E shall not jump over a defer statement in E.

Jumps by means of goto in E shall not jump over a defer statement in E.

Jumps by means of return, break, continue or goto shall not exit S.

Semantics

When execution reaches a defer statement D, its S is not immediately executed during sequential
execution of the program. Instead, S is executed upon:

— the termination of the block E (such as from reaching its end);
— or, any exit from E through return, goto, break, or continue.

The execution is done just before leaving the enclosing block E. In particular return expressions (and
conversion to return values) are calculated before executing S.

Multiple defer statements execute in the reverse order they appeared in E. Within a single defer
statement D, if D contains one or more defer statements of its own, then these defer statements are
also executed in reverse order at the end of S, recursively, according to the rules of this clause.

If E has any defer statements D that have been reached and their S have not yet executed, but the
program is terminated or leaves E through any of the following means:

— a function with the _Noreturn function specifier, or a function annotated with the noreturn
or _Noreturn attribute, is called

— or, any signal SIGABRT, SIGINT, or SIGTERM occurs

then any such S are not run, unless otherwise specified by the implementation. Any other D that have
not been reached are not run.

© ISO 2025 — All rights reserved.
7

ISO/DIS TS25755(en)

NOTE 1 The execution of deferred statements upon non-local jumps (i.e., longjmp and setjmp
described in ISO/IEC 9899:2024 §7.13) or program termination is a technique sometimes known as
“unwinding” or “stack unwinding”, and some implementations perform it. See also ISO/IEC 14882
Programming languages — C++ [except.ctor].

If a non-local jump is used within E but before the execution of D:

— if execution leaves E, S will not be executed;
— otherwise, if control returns to a point in E and causes D to be reached more than once, the

effect is the same as reaching D only once.

NOTE 2 The “execution” of a defer statement only lets the program know that S will be run on any
exit from that scope. There is no observable side effect to repeat from reaching D, as the manifestation
of any of the effects of S will happen if and only if E is exited or terminated as previously specified.

If a non-local jump is executed from S and control leaves S, the behavior is unspecified.

If a non-local jump is executed outside of any D and:

— it jumps into any S;
— or, it jumps over any D within E;

the behavior is unspecified.

EXAMPLE 1 Defer statements cannot be jumped over.

#include <stdio.h>

int f () {
 goto b; // constraint violation
 defer { printf(" meow"); }
 b:
 printf("cat says");
 return 1;
}

int g () {
 return printf("cat says");
 defer { printf(" meow"); } // okay: no constraint violation, not
executed
 // print "cat says" to standard output
}

int h () {
 goto b;
 {
 // okay: no constraint violation
 defer { printf(" meow"); }
 }
 b:
 printf("cat says");
 return 1; // prints "cat says" to standard output
}

int i () {
 {
 defer { printf("cat says"); }

© ISO 2025 — All rights reserved.
8

ISO/DIS TS25755(en)

 // okay: no constraint violation
 goto b;
 }
 b:
 printf(" meow");
 return 1; // prints "cat says meow" to standard output
}

int j () {
 defer {
 goto b; // constraint violation
 printf(" meow");
 }
 b:
 printf("cat says");
 return 1;
}

int k () {
 defer {
 return 5; // constraint violation
 printf(" meow");
 }
 printf("cat says");
 return 1;
}

int l () {
 defer {
 b:
 printf(" meow");
 }
 goto b; // constraint violation
 printf("cat says");
 return 1;
}

int m () {
 goto b; // okay: no constraint violation
 {
 b:
 defer { printf("cat says"); }
 }
 printf(" meow");
 return 1; // prints "cat says meow" to standard output
}

int n () {
 goto b; // constraint violation
 {
 defer { printf(" meow"); }
 b:
 }
 printf("cat says");
 return 1;

© ISO 2025 — All rights reserved.
9

ISO/DIS TS25755(en)

}

int o () {
 {
 defer printf("cat says");
 goto b;
 }
 b:;
 printf(" meow");
 return 1; // prints "cat says meow"
}

int p () {
 {
 goto b;
 defer printf(" meow");
 }
 b:;
 printf("cat says");
 return 1; // prints "cat says"
}

EXAMPLE 2 All the expressions and statements of an enclosing block are evaluated before executing
defer statements, including any conversions. After all defer statements are executed, the block is then
exited.

int main () {
 int r = 4;
 int* p = &r;
 defer { *p = 5; }
 return *p; // return 4;
}

Conversions for the purposes of return are also computed before defer is entered.

#include <float.h>
#include <assert.h>

bool f () {
 double x = DBL_SNAN;
 defer {
 // fetestexcept(FE_INVALID) is nonzero because of the
 // comparison during the conversion to bool
 assert(fetestexcept(FE_INVALID) != 0);
 }
 return x;
}

EXAMPLE 3 It is implementation-defined if defer statements will execute if the exiting / non-
returning functions detailed previously are called.

© ISO 2025 — All rights reserved.
10

ISO/DIS TS25755(en)

#include <stdio.h>
#include <stdlib.h>

int f () {
 void* p = malloc(1);
 if (p == NULL) {
 return 0;
 }
 defer free(p);
 exit(1); // "p" may be leaked
 return 1;
}

int main () {
 return f();
}

EXAMPLE 4 Defer statements, when execution reaches them, are tied to their enclosing block.

#include <stdio.h>
#include <stdlib.h>

int main () {
 {
 defer {
 printf(" meow");
 }
 if (true)
 defer printf("cat");
 printf(" says");
 }
 // "cat says meow" is printed to standard output
 exit(0);
}

#include <stdio.h>
#include <stdlib.h>

int main () {
 {
 const char* arr[] = {"cat", "kitty", "ferocious little baby"};
 defer {
 printf(" meow");
 }
 for (unsigned i = 0; i < 3; ++i)
 defer printf("my %s, ", arr[i]);
 printf("says");
 }
 // "my cat, my kitty, my ferocious little baby, says meow"
 // is printed to standard output
 exit(0);
}

© ISO 2025 — All rights reserved.
11

ISO/DIS TS25755(en)

EXAMPLE 5 Defer statements execute in reverse order, and nested defer statements execute in reverse
order but at the end of the defer statement they were invoked within. The following program:

int main () {
 int r = 0;
 {
 defer {
 defer r *= 4;
 r *= 2;
 defer {
 r += 3;
 }
 }
 defer r += 1;
 }
 return r; // return 20;
}

is equivalent to:

int main () {
 int r = 0;
 r += 1;
 r *= 2;
 r += 3;
 r *= 4;
 return r; // return 20;
}

EXAMPLE 6 Defer statements can be executed within a switch, but a switch cannot be used to jump
over a defer statement.

#include <stdlib.h>

int main () {
 void* p = malloc(1);
 switch (1) {
 defer free(p); // constraint violation
 default:
 defer free(p);
 break;
 }
 return 0;
}

EXAMPLE 7 Defer statements can not be exited by means of break or continue .

int main () {
 switch (1) {
 default:
 defer {
 break; // constraint violation
 }

© ISO 2025 — All rights reserved.
12

ISO/DIS TS25755(en)

 }
 for (;;) {
 defer {
 break; // constraint violation
 }
 }
 for (;;) {
 defer {
 continue; // constraint violation
 }
 }
 return 0;
}

EXAMPLE 8 defer statements that are not reached are not executed.

#include <stdlib.h>

int main () {
 void* p = malloc(1);
 return 0;
 defer free(p); // not executed, p is leaked
}

EXAMPLE 9 defer statements can contain other compound statements.

typedef struct meow *handle;

extern int purr (handle *h);
extern void un_purr(handle h);

int main () {
 handle h;
 int err = purr(&h);
 defer if (!err) un_purr(h);
 return 0;
}

6.5 Predefined macro names

In addition to the keywords in ISO/IEC 9899:2024 §6.10.10, an implementation shall define the
following macro names:

__STDC_DEFER_TS25755___ The integer literal 1.

7 Library

The requirements from ISO/IEC 9899:2024, clause 7 apply without any additional requirements in this
document.

Index

© ISO 2025 — All rights reserved.
13

ISO/DIS TS25755(en)

C
Conversions 7, 10

D
Defer statement 6, 7, 8, 10, 12, 13
Defer statement 8, 11, 12
Deferred block 7

I
ISO/IEC 14882 8
ISO/IEC 9899 5
ISO/IEC 9899:2024 6, 7, 8, 13

K
Keywords

break 7, 12
continue 7, 12
defer 6, 7, 10
goto 7, 8
return 7
switch 7, 12

M
Macros

__STDC_DEFER_TS__ 13

N
Non-local jump 8
noreturn 7
_Noreturn 7

P
Program termination 6, 10

S
Signal 7

U
Unlabeled statement 7
Unspecified behavior 8

© ISO 2025 — All rights reserved.
14

ISO/DIS TS25755(en)

© ISO 2025 - All rights reserved www.iso.org

https://www.iso.org

	Foreword
	Introduction
	Scope
	Normative References
	Terms and definitions
	Conformance
	Environment
	General
	Program termination

	Language
	General
	Keywords
	Statements
	Defer statements
	Predefined macro names

	Library
	Index
	C
	D
	I
	K
	M
	N
	P
	S
	U

